81 research outputs found

    HP-multigrid as smoother algorithm for higher order discontinuous Galerkin discretizations of advection dominated flows. Part I. Multilevel Analysis

    Get PDF
    The hp-Multigrid as Smoother algorithm (hp-MGS) for the solution of higher order accurate space-(time) discontinuous Galerkin discretizations of advection dominated flows is presented. This algorithm combines p-multigrid with h-multigrid at all p-levels, where the h-multigrid acts as smoother in the p-multigrid. The performance of the hp-MGS algorithm is further improved using semi-coarsening in combination with a new semi-implicit Runge-Kutta method as smoother. A detailed multilevel analysis of the hp-MGS algorithm is presented to obtain more insight into the theoretical performance of the algorithm. As model problem a fourth order accurate space-time discontinuous Galerkin discretization of the advection-diffusion equation is considered. The multilevel analysis shows that the hp-MGS algorithm has excellent convergence rates, both for low and high cell Reynolds numbers and on highly stretched meshes

    Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows. Part I. General formulation

    Get PDF
    A new space-time discontinuous Galerkin finite element method for the solution of the Euler equations of gas dynamics in time-dependent flow domains is presented. The discontinuous Galerkin discretization results in an efficient element-wise conservative upwind finite element method, which is particularly well suited for local mesh refinement. The upwind scheme uses a formulation of the HLLC flux applicable to moving meshes and several formulations for the stabilization operator to ensure monotone solutions around discontinuities are investigated. The non-linear equations of the space-time discretization are solved using a multigrid accelerated pseudo-time integration technique with an optimized Runge-Kutta method. The linear stability of the pseudo-time integration method is investigated for the linear advection equation. The numerical scheme is demonstrated with simulations of the flow field in a shock tube, a channel with a bump, and an oscillating NACA 0012 airfoil. These simulations show that the accuracy of the numerical discretization is O(h5/2)O(h^{5/2}) in space for smooth subsonic flows, both on structured and locally refined meshes, and that the space-time adaptation can significantly improve the accuracy and efficiency of the numerical method. \u

    Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows. Part II. Efficient flux quadrature

    Get PDF
    A new and efficient quadrature rule for the flux integrals arising in the space-time discontinuous Galerkin discretization of the Euler equations in a moving and deforming space-time domain is presented and analyzed. The quadrature rule is a factor three more efficient than the commonly applied quadrature rule and does not affect the local truncation error and stability of the numerical scheme. The local truncation error of the resulting numerical discretization is determined and is shown to be the same as when product Gauss quadrature rules are used. Details of the approximation of the dissipation in the numerical flux are presented, which render the scheme consistent and stable. The method is succesfully applied to the simulation of a three-dimensional, transonic flow over a deforming wing. \u

    A reliable and efficient implicit a posteriori error estimation technique for the time harmonic Maxwell equations

    Get PDF
    We analyze an implicit a posteriori error indicator for the time harmonic Maxwell equations and prove that it is both reliable and locally efficient. For the derivation, we generalize some recent results concerning explicit a posteriori error estimates. In particular, we relax the divergence free constraint for the source term. We also justify the complexity of the obtained estimator

    HP-multigrid as smoother algorithm for higher order discontinuous Galerkin discretizations of advection dominated flows. Part II. Optimization of the Runge-Kutta smoother

    Get PDF
    Using a detailed multilevel analysis of the complete hp-Multigrid as Smoother algorithm accurate predictions are obtained of the spectral radius and operator norms of the multigrid error transformation operator. This multilevel analysis is used to optimize the coefficients in the semi-implicit Runge-Kutta smoother, such that the spectral radius of the multigrid error transformation operator is minimal under properly chosen constraints. The Runge-Kutta coefficients for a wide range of cell Reynolds numbers and a detailed analysis of the performance of the hp-MGS algorithm are presented. In addition, the computational complexity of the hp-MGS algorithm is investigated. The hp-MGS algorithm is tested on a fourth order accurate space-time discontinuous Galerkin finite element discretization of the advection-diffusion equation for a number of model problems, which include thin boundary layers and highly stretched meshes, and a non-constant advection velocity. For all test cases excellent multigrid convergence is obtained

    Discrete Fourier analysis of multigrid algorithms

    Get PDF
    The main topic of this report is a detailed discussion of the discrete Fourier multilevel analysis of multigrid algorithms. First, a brief overview of multigrid methods is given for discretizations of both linear and nonlinear partial differential equations. Special attention is given to the hp-Multigrid as Smoother algorithm, which is a new algorithm suitable for higher order accurate discontinuous Galerkin discretizations of advection dominated flows. In order to analyze the performance of the multigrid algorithms the error transformation operator for several linear multigrid algorithms are derived. The operator norm and spectral radius of the multigrid error transformation are then computed using discrete Fourier analysis. First, the main operations in the discrete Fourier analysis are defined, including the aliasing of modes. Next, the Fourier symbol of the multigrid operators is computed and used to obtain the Fourier symbol of the multigrid error transformation operator. In the multilevel analysis, two and three level h-multigrid, both for uniformly and semi-coarsened meshes, are considered, and also the analysis of the hp-Multigrid as Smoother algorithm for three polynomial levels and three uniformly and semi-coarsened meshes. The report concludes with a discussion of the multigrid operator norm and spectral radius. In the appendix some useful auxiliary results are summarized

    Self-Evaluation Applied Mathematics 2003-2008 University of Twente

    Get PDF
    This report contains the self-study for the research assessment of the Department of Applied Mathematics (AM) of the Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) at the University of Twente (UT). The report provides the information for the Research Assessment Committee for Applied Mathematics, dealing with mathematical sciences at the three universities of technology in the Netherlands. It describes the state of affairs pertaining to the period 1 January 2003 to 31 December 2008

    Hamiltonian discontinuous Galerkin FEM for linear, rotating incompressible Euler equations: inertial waves

    Get PDF
    A discontinuous Galerkin ļ¬nite element method (DGFEM) has been developed and tested for linear, three-dimensional, rotating incompressible Euler equations. These equations admit complicated wave solutions. The numerical challenges concern: (i) discretisation of a divergence-free velocity ļ¬eld; (ii) discretisation of geostrophic boundary conditions combined with no-normal ļ¬‚ow at solid walls; (iii) discretisation of the conserved, Hamiltonian dynamics of the inertial-waves; and, (iv) large-scale computational demands owing to the three-dimensional nature of inertial-wave dynamics and possibly its narrow zones of chaotic attraction. These issues have been resolved: (i) by employing Diracā€™s method of constrained Hamiltonian dynamics to our DGFEM for linear, compressible ļ¬‚ows, thus enforcing the incompressibility constraints; (ii) by enforcing no-normal ļ¬‚ow at solid walls in a weak form and geostrophic tangential ļ¬‚ow ā€”along the wall; (iii) by applying a symplectic time discretisation; and, (iv) by combining PETScā€™s linear algebra routines with our high-level software. We compared our simulations with exact solutions of three-dimensional compressible and incompressible ļ¬‚ows, in (non)rotating periodic and partly periodic cuboids (PoincarĀ“e waves). Additional veriļ¬cations concerned semi-analytical eigenmode solutions in rotating cuboids with solid walls

    Error analysis of a continuous-discontinuous Galerkin finite element method for generalized 2D vorticity dynamics

    Get PDF
    A detailed a priori error estimate is provided for a continuous-discontinuous Galerkin finite element method suitable for two-dimensional geophysical flows. Special attention is given to derive estimates which require only minimal smoothness in the vorticity field
    • ā€¦
    corecore